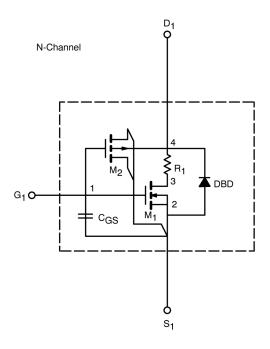
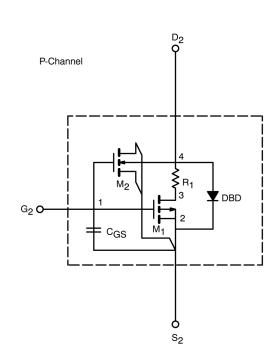


N- and P-Channel Half-Bridge, Reduced Qg, Fast Switching

CHARACTERISTICS

- N- and P-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- · Apply for both Linear and Switching Application
- Accurate over the –55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics


DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n- and p-channel vertical DMOS. The model subcircuit schematic is extracted and optimized over the -55 to 125°C temperature ranges under the pulsed 0-to-5V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

SUBCIRCUIT MODEL SCHEMATIC

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

Document Number: 71592 www.vishay.com 25-Feb-99 1

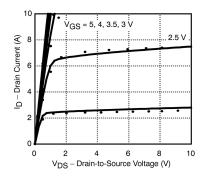
SPICE Device Model Si6803DQ

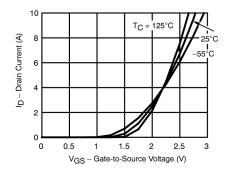
Vishay Siliconix

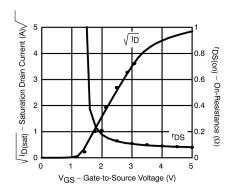
Parameter	Symbol	Test Conditions		Typical	Unit
Static					
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	N-Ch	0.98	V
		$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	P-Ch	1.1	
On-State Drain Current ^a	I _{D(on)}	V _{DS} = 5 V, V _{GS} = 4.5 V	N-Ch	40	А
		$V_{DS} = -5 \text{ V}, V_{GS} = -4.5 \text{ V}$	P-Ch	32	
Drain-Source On-State Resistance ^a	r _{DS(on)}	V _{GS} = 4.5 V, I _D = 2.5 A	N-Ch	0.08	Ω
		$V_{GS} = -4.5 \text{ V}, I_D = -2.3 \text{ A}$	P-Ch	0.086	
		$V_{GS} = 3 \text{ V}, I_D = 2 \text{ A}$	N-Ch	0.110	
		$V_{GS} = -3 \text{ V}, I_D = -1.9 \text{ A}$	P-Ch	0.122	
Forward Transconductance ^a	g _{fs}	V_{DS} = 15 V, I_{D} = 2.5 A	N-Ch	7	S
		$V_{DS} = -15 \text{ V}, I_D = -2.3 \text{ A}$	P-Ch	6.3	
Diode Forward Voltage ^a	V _{SD}	I _S = 1 A, V _{GS} = 0 V	N-Ch	0.65	٧
		I _S = -1 V, V _{GS} = 0 V	P-Ch	-0.65	
Dynamic ^b					
Total Gate Charge	Qg		N-Ch	3.7	nC
		N-Channel $V_{DS}=3.5~V,~V_{GS}=4.5~V,~I_D=0.3~A$ P-Channel $V_{DS}=-3.5~V,~V_{GS}=-4.5~V,~I_D=-0.3~A$	P-Ch	4.7	
Gate-Source Charge	Q_{gs}		N-Ch	0.8	
			P-Ch	1.3	
Gate-Drain Charge	Q_{gd}		N-Ch	0.30	
			P-Ch	0.6	
Turn-On Delay Time	$t_{d(on)}$		N-Ch	15	ns
			P-Ch	16	
Rise Time	t _r	N-Channel V_{DD} =3.5 V, R_L = 11.5 Ω	N-Ch	6	
		$I_D \cong 0.3 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_G = 6 \Omega$	P-Ch	8	
Turn-Off Delay Time	$t_{d(off)}$	P-Channel	N-Ch	16	
		$V_{DD} = -3.5 \text{ V, } R_L = 11.5 \Omega$ $I_D \cong -0.3 \text{ A, } V_{GEN} = -4.5 \text{ V, } R_G = 6 \Omega$	P-Ch	20	
Fall Time	t _f		N-Ch	10	
			P-Ch	18	
Source-Drain Reverse Recovery Time	t _{rr}	$I_F = A$, $I_S = 1.25A$, di/dt = 100 A/ μ s	N-Ch	50	
			P-Ch	50	

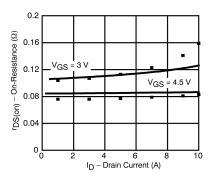
www.vishay.com Document Number: 71592 25-Feb-99

a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing.

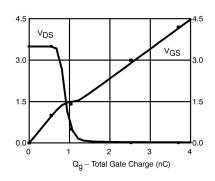


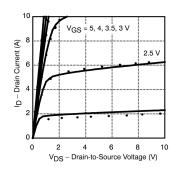


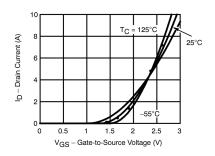

Vishay Siliconix

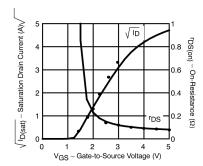

COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)

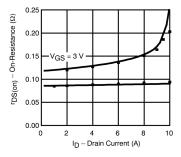

N-CHANNEL MOSFET

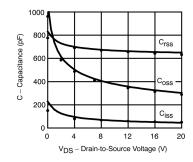


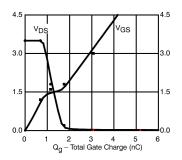



Note: Dots and squares represent measured data.


Vishay Siliconix




P-CHANNEL MOSFET



Note: Dots and squares represent measured data.

www.vishay.com Document Number: 71592 25-Feb-99